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Abstract 

 
We elaborate an efficient computational method to calculate multiphase Helmholtz free 

energies over wide ranges of volume and temperature in materials that can be described 

by temperature-independent ion forces.  Our method leverages and extends the technique 

of reversible scaling molecular dynamics (RSMD) proposed by de Konig et al. [Phys. 

Rev. Lett. 83, 3973 (1999)], which allows a free-energy difference in a given phase at 

constant volume to be calculated as a function of temperature from a single MD 

simulation.  In mechanically stable solid phases, our approach combines standard 

quasiharmonic lattice dynamics at low temperatures with RSMD simulation of the 

anharmonic vibrational free energy at high temperatures to produce a seamless free 

energy from zero temperature to above melt along constant-volume isochores.  In the 

liquid, we combine an accurate calculation of the free energy along a high-temperature 

reference isotherm with isochoric RSMD simulations from that temperature to below 

melt.  In metastable solid phases that are mechanically unstable at low temperature, we 

use two-phase MD melt simulations together with the liquid free energy to calculate the 

solid free energy along the solidus melt line and then perform isochoric RSMD 

simulations to temperatures above and below that point.  We have specifically adapted 

our free-energy methodology to metals where the ion forces are well described by model 

generalized pseudopotential theory (MGPT) multi-ion interatomic potentials.  Then using 

refined Ta6.8x MGPT potentials, we have converged total free energies and their 

components to sub-mRy numerical accuracy in the stable-bcc, liquid, and metastable-fcc 

phases of tantalum for volumes ranging from up to 26% expansion to nearly two-fold 
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compression and for temperatures to 25,000 K.  In turn, we have successfully used the 

free energies to calculate physically accurate thermodynamic properties, including bcc 

and fcc melt curves and a multiphase equation of state for Ta over the same temperature 

range and for pressures as high as 600 GPa. 

 

PACS: 05.70.Ce, 02.70.Ns, 34.20.Cf, 64.30.Ef 
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I. INTRODUCTION 
 
The efficient calculation of accurate free energies in solids and liquids from molecular 

dynamics (MD) simulations is a challenging problem of long-standing interest and 

importance.  Numerous specific computational schemes have been developed that depend 

to varying degrees on the principles of thermodynamic integration (TI) [1,2], adiabatic 

switching (AS) [2,3], and/or thermodynamic perturbation theory (TPT) [2,4,5].  

Particularly challenging is the problem of efficiently calculating free energies in real 

materials over wide ranges of volume or pressure and temperature in multiple phases.  

This capability is required to obtain multiphase equations of state and equilibrium phase 

lines to high (1-2%) accuracy from a given set of either quantum-mechanical or empirical 

interatomic forces.  The simplifying and highly efficient method of reversible scaling 

molecular dynamics (RSMD) proposed by de Konig et al. [3], which marries the 

principles of TI and AS, has proven to be useful in this regard to obtain free-energy 

differences as a function of temperature at constant volume in a given phase from a single 

MD simulation.  In mechanically stable solid phases, we have been able to combine 

RSMD simulation at high temperature with quasiharmonic lattice dynamics (QHLD) at 

low temperature to obtain absolute free energies from zero temperature to above melt.  In 

the liquid phase, we similarly have combined RSMD simulation with an accurate method 

to obtain absolute reference free energies at high temperature, an approach developed by 

marrying the principles of AS and TPT.  Using quantum-mechanical interatomic 

potentials obtained from model generalized pseudopotential theory (MGPT) [6-11], our 

free-energy approach has been successfully applied to calculate accurate high-pressure 

melting curves in metals [10,11] in a fraction of the time previously required from 

thermodynamic integration alone [7,8].  We have also now extended our method to treat 

unstable solid phases that are only mechanically stabilized at high temperature by large 

anharmonic vibrational effects, where such structures become either metastable or stable 

phases in the high-temperature phase diagram.  The purpose of this paper is to elaborate 

the details of our RSMD-based free-energy approach, and to illustrate the power and 

utility of the method through application to the temperature-pressure phase diagram and 

multiphase equation of state of tantalum (Ta). 
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To state more specifically the technical problem addressed in this paper, we seek to 

calculate the total Helmholtz free energy per atom A(!,T )  for a given solid or liquid 

phase of a material over extended ranges of atomic volume Ω and temperature T in terms 

of the material’s total internal energy, 

 

 E(!,T ) = "T 2 #(A /T )
#T !

 ,                                                                                       (1) 

 
and total internal pressure, 

 

 P(!,T ) = " #A
#!

$
%&

'
()
T

 ,                                                                                                (2) 

 
quantities that can be obtained directly from MD simulation at high temperature, and in 

the case of a mechanically stable solid phase from QHLD at low temperature.  Formal 

thermodynamic integration of Eq. (1) from a reference temperature Tref  and Eq. (2) from 

a reference volume !ref  gives, respectively, 

 

 A(!,T ) = (T /Tref )A(!,Tref )"T [E(!, #T
Tref

T

$ ) / ( #T )2 ]d #T                                           (3) 

 
and 

 

 A(!,T ) = A(!ref ,T )" P( #!
!ref

!

$ ,T )d #!  .                                                                   (4) 

 
Evaluating Eq. (4) at T = Tref  and inserting the result into Eq. (3) then yields 

 

 A(!,T ) = (T /Tref )[A(!ref ,Tref )" P( #! ,Tref
!ref

!

$ )d #! ]"T [E(!, #T
Tref

T

$ ) / ( #T )2 ]d #T
 
.    (5) 

 
Equation (5) is often the starting point for a direct TI calculation of A(!,T )  from MD 

data on E(!,T )  and P(!,T ) .  This starting point has the advantage of requiring a 
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reference free energy A(!ref ,Tref )  at only a single volume and temperature for a given 

phase.  However, there are also unwanted computational inefficiencies in the integral 

terms in Eq. (5).  Because pressure is inherently a derivative quantity, it is usually true 

that for a given level of computing effort, MD energies are obtained more accurately than 

pressures.  For this reason, we prefer not to integrate the pressure to obtain a free-energy 

contribution, but instead to calculate the pressure after the fact from Eq. (2).  This makes 

Eq. (3), which does not require knowledge of the pressure, a more attractive starting point 

than Eq. (5), although the former does require a reference free energy across an entire 

T = Tref  isotherm, or at least over some parametric curve Tref (!)  that crosses the entire 

volume range of interest.  Equations (3) and (5), however, still require a detailed 

knowledge of the total internal energy E(!,T )  over the entire volume and temperature 

ranges of interest.  In practice, this could easily require 50-100 long MD simulations to 

obtain E(!,T )  accurately for a single wide-range phase.  The simplification that RSMD 

provides is to replace the energy integral over temperature in Eqs. (3) and (5) with an 

equivalent time integral that can be evaluated in a single MD simulation. 

 
Our present RSMD-based methodology to evaluate the free energy A(!,T )  starting from 

Eq. (3) is developed in Sec. II for the familiar case of weak-coupling materials, whose 

thermodynamic functions can be partitioned into zero-temperature, ion-thermal, and 

electron-thermal components, with assumed temperature-independent forces on the ions 

and small electron-thermal contributions.  We derive a general RSMD equation for the 

important ion-thermal free energy in Sec. IIA, and then implement that result for the three 

material phases of most direct interest.  First, in Sec. IIB we treat the stable solid phase, 

using a Tref = 0  reference isotherm, and including an accurate, isolated evaluation of the 

anharmonic vibrational contribution to the free energy, which can be directly added to the 

quasiharmonic contribution.  Then in Sec. IIC we address the liquid phase, using a high-

temperature reference isotherm, and introducing an independent AS-TPT method to 

calculate the reference free energy along that isotherm.  Finally, in Sec. IID we consider 

the metastable solid phase, using a reference high-temperature melt curve Tm(!) , which 

can be independently calculated by accurate two-phase MD coexistence simulations [11].  
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In Sec. IIE we also discuss an efficient way to add the small additional electron-thermal 

free energy component for the case of metals. 

 
While our developed free-energy methodology is general, and can be applied to metals 

and non-metals alike, for definiteness and for the intended application to Ta in Sec. III, 

we have here specifically adapted the present methodology to the case of metals 

described by multi-ion MGPT interatomic potentials [6-11].  We have also taken this 

opportunity to elaborate additional important details in Sec. IIIA about our refined Ta6.8x 

MGPT potentials, which were first applied in Ref. [11].  In the remainder of Sec. III, 

these potentials are used to calculate the free energy and its components of the stable bcc 

solid phase, the high-temperature liquid phase, and the metastable fcc phase of Ta.  In the 

process, we test the computational accuracy and efficiency of our free-energy method, as 

well as the physical accuracy of the Ta6.8x potentials in describing both sensitive 

thermodynamic derivatives at ambient pressure and the equation of state and melt 

behavior of Ta at high pressure.  Our conclusions are given in Sec. IV. 
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II. THEORETICAL AND COMPUTATIONAL APPROACH 
 
We assume that the thermodynamics of the system of interest is well described by the 

conventional weak-coupling model, in which the total Helmholtz free energy can be 

expressed as a sum of cold (T = 0 ), ion-thermal, and electron-thermal contributions: 

 
 A(!,T ) = E0 (!)+ Aion (!,T )+ Ael (!,T )  ,                                                                (6) 

 
with corresponding equations for the total internal energy and pressure: 

 
 E(!,T ) = E0 (!)+ Eion (!,T )+ Eel (!,T )                                                                   (7) 

 
 P(!,T ) = P0 (!)+ Pion (!,T )+ Pel (!,T )  .                                                                 (8) 

 
In Eq. (6) we have noted that one can take A0 = E0  and remain consistent with Eq. (3) 

without any loss in generality.  It further follows that the ion-thermal and electron-

thermal free-energy components, Aion  and Ael  in Eq. (6), satisfy Eq. (3) separately: 

 

 Aion (!,T ) = (T /Tref )Aion (!,Tref )"T [Eion (!, #T
Tref

T

$ ) / ( #T )2 ]d #T                                  (9) 

 

 Ael (!,T ) = (T /Tref )Ael (!,Tref )"T [Eel (!, #T
Tref

T

$ ) / ( #T )2 ]d #T  .                                 (10) 

 
Consistent with the requirements of RSMD simulation [3], Eqs. (6)-(10) also implicitly 

assume that the forces that control ion motion in the system are independent of 

temperature.  In compatible quantum-mechanical treatments, such forces would normally 

be obtained at zero electron temperature, as, for example, with first-principles generalized 

pseudopotential theory (GPT) [12-16] pair potentials, or model GPT (MGPT) [6-11] 

multi-ion potentials, or with tight-binding approaches such as Pettifor’s bond-order 

potentials (BOP) [17-19].  In such a case, the final electron-thermal free-energy 

component Ael  in Eq. (6) embodies the remaining effects of electron temperature Tel  on 

the structure and occupation of the electronic states of the system.  Quantum-mechanical 
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treatments that explicitly incorporate electron temperature and produce Tel -dependent 

forces, however, such as quantum molecular dynamics (QMD) simulations in metals 

based on finite-temperature density-functional theory (DFT) [5,20], or the new Tel -

dependent MGPT potentials for transition metals [20], are currently beyond the scope of 

RSMD and are not directly considered here.  At the other extreme, temperature-

independent empirical potentials such as embedded-atom method (EAM) [21] or Finnis-

Sinclair (FS) [22] potentials are compatible with RSMD and the present free-energy 

approach.  The present approach has been specifically adapted to multi-ion MGPT 

potentials, but can be readily extended to GPT, BOP, EAM, FS or any other temperature-

independent potentials. 

 
Two further practical considerations concerning the application of Eqs. (6)-(10) should 

also be mentioned.  First, the cold energy and pressure components, E0  and P0 , in Eqs. 

(6)-(8) can be treated in two closely related but distinct ways.  The first option is to assign 

E0  and P0  to the T = 0  ground state phase of the material and absorb the structural-

energy differences with other phases into Aion (!,Tref ) in Eq. (9).  This option is especially 

convenient when treating the liquid in combination with the ground-state or other stable 

solid phase to obtain an equilibrium melt curve, and is the treatment of choice for this 

case.  Alternatively, one can calculate a separate E0  and P0  for each phase considered.  

This option is most useful when one is treating multiple solid phases, including 

metastable phases. 

 
The second practical consideration here concerns the treatment of the electron-thermal 

free-energy component Ael  in Eq. (6).  In systems where the underlying weak-coupling 

thermodynamic model works well, Ael  is a small correction to Aion , and this is implicitly 

assumed in the development below.  If desired, Ael  can be neglected entirely, as is 

usually done for semiconductors or insulators, or is often done for metals as well when 

the required electron-thermal information is not available.  Alternatively, however, Ael  

can be treated in a separate approximate manner, as discussed below in Sec. IIE for the 

case of metals.  But for metals and non-metals alike, the central focus of attention in the 
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present approach is the calculation of the ion-thermal free-energy component Aion , to 

which the RSMD method is specifically addressed. 

 
A. Reversible scaling molecular dynamics for Aion  
 
The RSMD method of de Koning et al. [3] takes direct advantage of the fact that in the 

classical statistical mechanics of an MD simulation for an N-ion system, the free energy 

depends on the total potential-energy function  U(R) !U(R1,R2,!RN )  establishing the 

interatomic forces on the ions only through the Boltzmann factor exp(!U / kBT ) , where 

kB  is the Boltzmann constant.  If one runs an MD simulation at a fixed simulation 

temperature Tref  for a scaled potential-energy function !U , then the corresponding free 

energy of the unscaled system is thereby determined for a temperature T = Tref / ! .  In an 

RSMD simulation, the scaling factor !  is allowed to vary slowly and linearly with time, 

 

 !(t) = 1+
! f "1
tS

t  ,                                                                                                  (11) 

 
starting from an initial value of ! = 1, corresponding to the initial temperature Tref , to a 

final value of ! f = !(tS ) = Tref /Tf , where Tf  is the final apparent temperature for which 

the free energy is to be obtained.  If the switching time tS  between those limits is long, 

then the RSMD simulation process is adiabatic and the temperature integral in Eq. (9) can 

be evaluated in terms of an equivalent time integral Wion  [3] as follows: 

 

 !T [Eion (", #T
Tref

T

$ ) / ( #T )2 ]d #T = Wion

%
+ 3
2
kBT ln% ! 1! 1

%
&
'(

)
*+ E0  ,                              (12) 

 
where 
 

 
Wion !,T (t)( ) = 1

N
d"( #t )
d #t0

t

$ U R( #t )( )d #t

= 1
N

" f %1
NS

U
n=1

nS (t )

& R(tn )( )
 .                                                                (13) 
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In the second line of Eq. (13), the time integral has been evaluated using the histogram 

method, assuming a small simulation time step h and NS  time steps, such that tS = NSh .  

In practice we take h on the order of 0.2 fs and NS  in the range 105 !107 , depending on 

the problem addressed and the numerical accuracy required, so tS  is in the range of 

20 ! 2000  ps.  Finally, inserting Eq. (12) back into Eq. (9) and using !"1 = T /Tref  one 

has the general result 

 

 Aion (!,T ) =
T
Tref
[E0 (!)+ Aion (!,Tref )+Wion (!,T )]"

3
2
kBT ln

T
Tref

" E0 (!)  .         (14) 

 
The use of this result in the special cases of the stable solid, the liquid, and the metastable 

solid is discussed below in Secs. IIB, IIC, and IID, respectively. 

 
B. Ion-thermal free energy Aion

sol  of the stable solid 
 
The ion-thermal free energy for a stable solid phase can be conveniently divided into 

quasiharmonic and anharmonic contributions: 

 
 Aion

sol (!,T ) = Aion
qh (!,T )+ Aion

ah (!,T )  .                                                                      (15) 

 
The former contribution can be expressed directly in terms of the volume-dependent 

quasiharmonic phonon frequencies !" (q,#)  of the solid crystal structure in question by 

the well-known result 

 

 Aion
qh (!,T ) = kBT

N
ln{2sinh[h"# (q,!

q,#
$ ) / (2kBT )]}  ,                                              (16) 

 
where the sum is over all wave vectors q  and phonon branches !  in the first Brillouin 

zone (BZ) of the reciprocal lattice.  Equation (16) fully takes into account the quantum 

Bose-Einstein statistics required in the low-temperature solid and is consistent with a 

Tref = 0  reference temperature, such that Aion
qh (!,0) = Eph

0 (!) , where 



 13 

 

 Eph
0 (!) = 1

2N
h"#

q,#
$ (q,!)                                                                                       (17) 

 
is the zero-point vibrational energy. 

 
The corresponding anharmonic contribution Aion

qh  can be obtained from the RSMD result 

for Aion , Eq. (14), in the following manner.  Equation (14) is based on classical 

Boltzmann statistics and from that equation one must subtract the corresponding classical 

harmonic component of the ion free energy, 3kBT (1! lnT ) .  Assuming only that 

Aion
ah (!,Tref ) = 0 , so that Aion (!,Tref ) = 3kBTref (1" lnTref )  in Eq. (14), one is left with the 

result 

 

 Aion
ah (!,T ) = T

Tref
[E0 (!)+Wion (!,T )]+

3
2
kBT ln

T
Tref

" E0 (!)  .                                (18) 

 
We note that physically the anharmonic contribution will vanish at zero temperature, so 

that Aion
ah (!,0) = 0 , and further that Aion

ah  remains negligibly small for temperatures below 

the Debye temperature, T <!D .  On the other hand, as a practical matter RSMD 

simulation cannot be carried down to very low temperatures and is most efficient and 

accurate numerically when T ! Tref >"D .  As a compromise, we assume a volume-

dependent reference temperature in Eq. (18) of the form Tref (!) = xD"D(!) , where xD  is 

a chosen fixed parameter and the Debye temperature is defined by the equation 

 

 kB!D(") =
8
9
Eph
0 (")  .                                                                                            (19) 

 
In practice, we find that an optimum choice for xD  is in the range 0.5 ! xD ! 0.8 .  For 

such a choice, Aion
ah (!,T )  can be evaluated as a function of temperature at a given volume 

using Eq. (18) and a single RSMD simulation ranging from T = xD!D  to T = Tmax
sol , the 

maximum temperature of interest in the solid at that volume.  To maintain good physical 
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accuracy, Tmax
sol  should not be taken too far above the solidus melt point, which can be 

estimated for this purpose by the volume-dependent Lindemann melt temperature 

 
 TL (!) = Tm

0["D(!) /"D(!m
0 )]2 (! /!m

0 )2/3  ,                                                           (20) 

 
with Tm

0  the observed or calculated stable-solid melt temperature at solidus volume !m
0 . 

One can then take Tmax
sol (!) = xL

maxTL (!) , with xL
max  a chosen parameter in the range 

1! xL
max ! 2 , depending on the magnitude of TL .  At expanded volumes, where TL  is 

small, a value in the vicinity of xL
max = 2  can be safely used, while at high pressure, where 

TL  is large, a value near xL
max = 1  is usually required. 

 

C. Ion-thermal free energy Aion
liq  of the liquid 

 
In the liquid, Eq. (14) can be used directly to obtain the temperature dependence of Aion

liq , 

but the challenge is to independently calculate the required reference free energy 

Aion
liq (!,Tref )  in an accurate and efficient manner.  To do this, we take Tref  to be a high 

temperature at the top of the range of interest in the liquid, Tref = Tmax
liq , and well above the 

maximum expected melt temperature in the volume range of interest.  We next introduce 

an appropriate reference system, with potential energy function Uref (R) , whose free 

energy Aion
ref (!,Tref )  is accurately known at the required conditions.  The principle of 

adiabatic switching then allows one to calculate Aion (!,Tref )  with equal accuracy by a 

smooth thermodynamic integration from the reference system to the true system: 

 

 Aion
liq (!,Tref ) = Aion

ref (!,Tref )+
1
N

U(R)"Uref (R) #
0

1

$ d#  ,                                          (21) 

 
where here !  is a scaling parameter varying between 0 and 1, and the quantity 

U(R)!Uref (R) "
 in the integrand is a thermal average at volume !  and temperature 

Tref  in the canonical ensemble of the mixed potential energy function 
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 U! (R) = !U(R)+ (1" !)Uref (R)  .                                                                          (22) 

 
To make the integration in Eq. (21) computationally efficient, however, the reference 

system used must be a good match to the physical system under consideration, so that 

U(R)!Uref (R) "
= dU" / d" "

 varies slowly and smoothly as a function of ! , and only 

a few points are needed to evaluate the integral accurately. 

 
In most materials, the thermodynamics of the high-temperature liquid is dominated by 

short-range repulsive forces, and a useful reference system to consider in the context of 

Eq. (21) is the inverse 12th power potential, r!12 , a potential that has been extensively 

studied via computer simulations and for which an accurate free energy and pair 

correlation function are known [23].  This choice also allows one to use the powerful 

technique of thermodynamic perturbation theory (TPT) to optimize the coefficient of the 

potential.  Specifically, for weak-coupling liquid metals at high temperature, where the 

potential-energy function U(R)  can be approximated in the general form 

 

 U(R) !U(R) = NEvol (")+
1
2

# v2
eff

i, j
$ (Rij ,")  ,                                                        (23) 

 
a special version of TPT, known as variational perturbation theory (VPT) [4,7,23,24], 

provides a rigorous upper bound (ub) on the liquid free energy Aliq  (in the limit Ael = 0 ): 

 
 Aliq (!,T ) " E0 (!)+ Aion

liq (!,T ) # Aliq
ub (!,T )  ,                                                          (24) 

 
where 
 

  Aliq
ub (!,T ) = Evol(!)+ Aref (z,T )+ (2" /!) gref (r, z)[v2

eff

0

#

$ (r,!)% vref (r, z)]r
2dr  .      (25) 

 
In Eqs. (23) and (25), Evol  is a structure-independent volume term and v2

eff  is a volume-

dependent effective pair potential for the true system, while Aref , gref , and vref , are, 
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respectively, the free energy, pair-correlation function, and pair potential of the r!12  

reference system [23], with 

 

 Aref (z,T ) =
1
nn=1

5

! Bn+1z
nkBT + Agas (",T )  ,                                                                 (26) 

 
 vref (r, z) = !(" / r)12                                                                                                 (27) 

 
and z = (! 3 / 2")(# / kBT )

1/4 .  In Eq. (26) the Bn+1  are the calculated virial coefficients: 

B2 = 3.6296 , B3 = 7.5816 , B4 = 9.9792 , B5 = 8.4520 , and B6 = 4.4 ; while Agas  is the 

ideal-gas free energy: Agas (!,T ) = "[ln(! / #ion
3 )+1]kBT , with  !ion = (2"!2 ) / (M ionkBT )  

and M ion  the ion mass. 

 
At each of the volumes of interest and temperature T = Tref , the variational parameter z  

can be chosen to minimize the right-hand side of Eq. (25), yielding a function zub (!) , for 

which Aliq
ub (!,Tref )  becomes a close upper bound to the true liquid free energy Aliq (!,Tref )  

over the entire volume range.  A corresponding lower bound (lb) on the free energy can 

also be established by VPT [24]: 

 
 Aliq (!,T ) " Aliq

lb (!,T )                                                                                              (28) 

 
where 
 

  Aliq
lb (!,T ) = Evol(!)+ Aref (z)+ (2" /!) geff (r,!)[v2

eff

0

#

$ (r,!)% vref (r, z)]r
2dr  .        (29) 

 
In Eq. (29), geff (r,!)  is the true-system pair correlation function for v2

eff (r,!)  and must 

be determined from independent MD simulations at the volumes of interest and T = Tref .  

The variational parameter z  can now be chosen to maximize the right-hand side of Eq. 

(28) at each volume, yielding z lb (!)  and making Aliq
lb (!,Tref )  a close lower bound to 

Aliq (!,Tref )  across the volume range. 
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An approximate baseline value for Aion

liq (!,Tref )  can be calculated by simply averaging the 

upper and lower bounds of Aliq (!,Tref )  and then subtracting the cold energy: 

 

 Aion
liq (!,Tref ) "

1
2
[Aliq

ub (!,Tref )+ Aliq
lb (!,Tref )]# E0 (!)  .                                             (30) 

 
While Eq. (30) often provides a good estimate, the more reliable and accurate procedure 

to obtain Aion
liq (!,Tref )  is to calculate first the average of zub  and z lb , 

 

 z (!) = 1
2
[zub (!)+ z lb (!)]   ,                                                                                  (31) 

 
and then use this result to define the final details of the r!12  reference system to be used 

in Eq. (21) for Aion
liq (!,Tref ) .  One thereby has as input for Eq. (21) 

 
 Aion

ref (!,Tref ) = Aref (z ,Tref )                                                                                         (32) 

 
and 
 

 Uref (R) =
1
2

! vref
i, j
" (Rij , z ) =

1
2

! 4(z#)4 kBTref
Rij
12

i, j
"  ,                                                   (33) 

 
with Aref  given by Eq. (26).  It should also be noted in this regard that the approximate 

form of U(R) !U(R)  assumed in Eq. (23) is used here only to obtain z , and that once 

z  is calculated the full potential-energy function U(R)  is to be used in Eq. (21).  The 

construction of U(R)  from U(R)  will be discussed below in Sec. IIIB for the case of 

transition metals described by multi-ion MGPT potentials. 

 
Once the reference free energy Aion

liq (!,Tref )  has been established for use in Eq. (14), that 

equation can be used directly to calculate the liquid ion-thermal free energy Aion
liq (!,T )  as 

a function of temperature at given volume from the chosen reference temperature 
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T = Tref = Tmax
liq  down to some desired minimum temperature T = Tmin

liq  below the melt 

curve.  It is again very often convenient to express the latter temperature as a specific 

fraction xL
min  of the volume-dependent Lindemann melt temperature, such that 

Tmin
liq (!) = xL

minTL (!) .  The optimum value of xL
min  depends to some extent on the 

application at hand.  For melting from the stable solid phase, a value in the range 

0.8 ! xL
min ! 0.5  usually works well. 

 

D. Ion-thermal free energy Aion
sol  of the metastable solid 

 
Metastable solid phases that are fully mechanically stable at low temperature with all real 

T = 0  phonon frequencies present no special problem, and such cases can be treated in 

the same manner as the stable solid phase discussed in Sec. IIB above.  The challenging 

case is the one of a metastable phase that is mechanically unstable at low temperature and 

is only mechanically stabilized at high temperature by anharmonic phonon-phonon 

interactions, with or without the aid of additional electron-thermal effects.  Such a phase 

has at least some imaginary phonon frequencies at T = 0 , and hence its quasiharmonic 

ion-thermal free energy, Aion
qh  as given by Eq. (16), does not exist and can’t be used to 

establish the reference energy Aion
sol (!,Tref )  that is required in Eq. (14).  For this case we 

have developed a special procedure to determine Aion
sol (!,Tref )  along the solidus melt line 

of the metastable phase in the Ael = 0  limit.  In that limit, the melt curve for the 

metastable phase can be determined directly by MD simulation using the accurate two-

phase coexistence method [11,25].  From the two-phase melt calculation, one can extract 

the volume-dependent reference solidus melt temperature Tm
sol(!) , melt pressure Pm

sol(!)

, and melt energy Em
sol(!)  over the entire volume range of interest.  Along the melt line, 

the melt temperature Tm , melt pressure Pm , and Gibbs free energy, G = A + P! , of the 

liquid and of the metastable solid must be equal, so that Pm = Pm
sol = Pm

liq , Tm = Tm
sol = Tm

liq , 

and the Helmholtz free energy of the metastable solid along the solidus melt line can be 

calculated as 
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 Asol (!sol,Tm ) = Aliq (!liq ,Tm )+ Pm(!liq "!sol )  .                                                       (34) 

 
For given values of Tm , Pm , and the solidus volume !sol  on the melt curve, the 

corresponding liquidus volume !liq  and free energy Aliq (!liq ,Tm )  can be obtained via 

interpolation on the liquid equation of state (calculated in the Ael = 0  limit).  With 

Tref = Tm  and ! =!sol , Eq. (34) can be used directly to establish the reference energy  

 
 Aion

sol (!,Tref ) = Asol (!sol,Tm )" E0 (!sol )                                                                      (35) 

 
needed in Eq. (14).  One can then apply Eq. (14) both upward in temperature from 

T = Tm  to the desired maximum T = Tmax
sol  and downward in temperature from T = Tm  to 

an allowable minimum T = Tmin
sol , which must be established independently for the 

metastable phase in question.  Once Aion
sol (!,T )  is thereby calculated for the volumes and 

temperatures of interest, the electron-thermal component Ael (!,T )  can finally be added 

to it to establish a total free energy and equation of state for the metastable phase. 

 

E. Electron-thermal free energy Ael  in metals 
 
For metals, the simplest treatment of the additional electron-thermal contribution to the 

thermodynamics is to use the standard low-temperature expansion of the total internal 

energy E(!,T )  to obtain the leading T 2  contribution to Eel (!,T ) .  Inserting the latter 

contribution into Eq. (10) with Tref = 0 , one then recovers the well-known result 

 

 Ael (!,T ) = "Eel (!,T ) = " #
2

6
(kBT )

2$(EF )  ,                                                          (36) 

 
where !(EF )  is the T = 0  density of electronic states at the Fermi level.  This treatment 

is usually adequate in simple metals, where the structure dependence to the density of 

states is weak and !(EF )  can be well approximated by a free-electron form.  In transition 

metals, however, !(EF )  is strongly material and structure dependent, so Eq. (36) is only 

adequate up to modest temperatures in the solid ground-state phase.  A more accurate 
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treatment of Ael  and Eel  for high-temperature transition-metal phases has been developed 

in terms of configuration-averaged, finite-temperature DFT calculations of the electronic 

entropy Sel = !"Ael / "T  in the hot solid and liquid, using atomic configurations obtained 

from MGPT-MD simulations [8].  In the prototype case of Ta, the DFT values of 

electronic entropy thereby obtained in both the hot solid and the liquid can be well fit in 

the form 

 
  Sel (!,T ) =" (!)T + # (!)T 3 +!  ,                                                                         (37) 

 
so that 

 

 
 
Ael (!,T ) = " 1

2
# (!)T 2 " 1

4
$ (!)T 4 +!                                                                 (38) 

and 

 
 
Eel (!,T ) =

1
2
" (!)T 2 + 3

4
# (!)T 4 +!  .                                                                (39) 

 
In the vicinity of melt for Ta, the resulting Ael  and Eel  functions differ little in the hot 

solid and the liquid, and these functions can be adequately approximated by only the first 

expansion term in Eqs. (38) and (39), respectively.  In that limit, one recovers the form of 

Eq. (36), but with !(EF )  replaced by an effective volume-dependent density of states 

!eff (") = 3# (") / ($ kB)
2 .  Even then, the electron-thermal contribution has been found to 

lower the calculated melt curve in Ta by only a small amount (< 5% ) [8-11].  At the 

same time, the electron-thermal contribution to sensitive thermodynamic derivatives such 

as the specific heat and thermal expansion coefficient can be much larger, as we 

specifically demonstrate for Ta in Sec. III. 
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III. APPLICATION TO TANTALUM 
 
In this section we consider the application of the RSMD-based free-energy methodology 

described in Sec. II above to the high-pressure phase diagram and multiphase equation of 

state (EOS) of Ta, as determined by the present Ta6.8x MGPT interatomic potentials and 

additional electron-thermal contributions.  Our treatment will include both ambient and 

extreme conditions, with the latter extending to as high as 600 GPa in pressure and to 

25,000 K in temperature. 

 

A. Ta6.8x MGPT interatomic potentials 

 
Within DFT quantum mechanics, generalized pseudopotential theory (GPT) provides a 

first-principles approach to multi-ion interatomic potentials in d-band transition metals 

[26], with a the real-space total-energy functional for the bulk material obtained at 

Tel = 0  in the general form 

 

 Etot (R;!) = NEvol(!)+
1
2

'v2 (ij;!
i, j
" )+ 1

6
'v3(ijk;!

i, j ,k
" )+ 1

24
'v4 (ijkl;!

i, j ,k ,l
" )  ,       (40) 

 
where the prime on each summation sign indicates the exclusion of all self-interaction 

terms from the summation.  The leading volume term Evol  in Eq. (40), as well as the two-

ion pair potential v2  and the three- and four-ion angular-force potentials, v3  and v4 , 

depend explicitly on the atomic volume Ω but are structure independent and transferable 

to all bulk ion configurations, either ordered or disordered.  The simplified model GPT or 

MGPT [6-11] derives from the GPT through a series of systematic approximations 

applied to Evol  and the potentials vn , approximations that are valid for mid-period 

transition metals with nearly half-filled d bands.  These two main approximations are (i) 

the neglect of explicit sp-d hybridization contributions to the potentials vn , contributions 

which destructively interfere for half-filled d bands; and (ii) the introduction of highly 

symmetrical canonical d bands [6], which allow the remaining d-state band-structure 

contributions to the potentials to be evaluated analytically in terms of a single radial 
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function f (r)  and three universal angular functions, L, P and M, that depend only on d 

symmetry. 

 
In the MGPT, the two-ion pair potential consists of four main contributions: 

 
v2 (r,!) = v2

sp(r,!)+ v2
hc (r,!)+ va (!)[ f (r)]

4 " vb(!)[ f (r)]
2  ,                            (41) 

 
where v2

sp  is a pseudopotential-derived screened ion-ion potential for the s and p valence 

electrons; v2
hc  is a repulsive “hard-core” potential, arising mainly from d-state non-

orthogonality effects; and va  and vb  are volume-dependent coefficients for the direct d-

band contributions.  In the latter two terms, f (r) = (1.8RWS / r)
p , where RWS  is the 

Wigner-Seitz radius and p is a weakly volume-dependent parameter, with a Gaussian 

cutoff introduced into f (r)  beyond the bcc second-neighbor distance [27].  For ideal 

canonical d bands,  p = 2!+1= 5  with  ! = 2 , but in all Ta applications, including the 

present Ta6.8x potentials, we have taken p = 4  at the observed equilibrium volume 

!0 = 121.6  a.u., and then allowed p to increase monotonically for decreasing Ω, as 

shown in Fig. 1(a). 

 
The angular-force multi-ion potentials v3  and v4  in Eq. (40) reflect directional bonding 

contributions arising from partial d-band filling, and in the MGPT these potentials are 

given by corresponding multi-ion d-band functions, which can be expressed in terms of 

three and six radial distances, rn , respectively, and dependent angles, !n : 

 
v3(r1,r2,r3;!) = vc(!) f (r1) f (r2 ) f (r3)L("1,"2,"3)+ vd (!){[ f (r1) f (r2 )]

2P("3)
+[ f (r2 ) f (r3)]

2P("1)+ [ f (r3) f (r1)]
2P("2 )}

     (42) 

and 

 
v4 (r1,r2,r3,r4 ,r5,r6;!) = ve(!)[ f (r1) f (r2 ) f (r3) f (r4 )M ("1,"2,"3,"4 ,"5,"6 )

+ f (r3) f (r2 ) f (r6 ) f (r5 )M ("7,"8,"9,"10,"5,"12 )
+ f (r1) f (r6 ) f (r4 ) f (r3)M ("11,"12,"5,"6,"3,"4 )]

 ,         (43) 
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Fig. 1  Volume dependence of the MGPT potential parameters and pair potential for 

Ta6.8x.  (a) Radial function exponent p for f (r)  (right vertical scale) and d-band 

potential coefficients v!  (left vertical scale).  (b) Two-ion pair potential v2  for selected 

volumes, in x increments of 0.04 with x = (! /!0 )
1/3 . 

 
where vc , vd , and ve  are additional volume-dependent d-band coefficients.  The specific 

three- and four-ion geometries assumed in Eqs. (42) and (43) are defined in Figs. 4a and 

6, respectively, of Ref. [6]. 

 

In the MGPT, the two-ion potential contributions v2
sp  and v2

hc  in Eq. (41) are determined 

from first-principles, as in the full GPT.  The remaining five d-band coefficients va , vb , 

vc , vd , and ve  in Eqs. (41)-(43) are also well-defined material parameters, but to 

compensate for the approximations introduced into the MGPT, these latter quantities, 

together with the volume term Evol  in Eq. (40), are fit to a combination of experimental 

and first-principles DFT data on basic material properties.  Specifically one fits, as a 

function of volume in the stable-solid bcc phase, a blend of experimental data at ambient 

pressure and DFT data at high pressure on the cold equation of state (EOS), the shear 

elastic moduli !C  and C44 , the unrelaxed vacancy formation energy Evac
0 , and the Debye 

temperature !D , subject to the additional constraint of the compressibility sum rule, 

which reduces the number of independent parameters from six to five.  The calculated 
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volume dependence of each of the d-band coefficients v!  is shown in Fig. 1(a) for the 

present case of Ta6.8x, where several technical improvements in the fitting scheme, as 

described below, have been introduced.  From those results, one can see that the 

fundamental theoretical MGPT requirements [6],  vb ! va > 0  and ve > vd > 0 , are all well 

maintained. 

 
Refinement of our basic MGPT fitting scheme has taken place over a number of 

generations of bcc transition-metal potentials [6-8, 27], and the present Ta6.8x potentials 

represent a systematic numerical improvement over the previous Ta4 potentials [8,27] in 

three specific areas.  First, a smoother blend of the input experimental and DFT data has 

been used through explicit analytic representations of that data, including (i) a universal-

equation-of-state representation [28] of the cold EOS functions E0 (!)  and P0 (!) ; (ii) 

power-series representations of !C (P)  and C44 (P)  in terms of pressure derivatives of the 

shear moduli; and (iii) explicit expression of the volume dependence of !D(")  in terms 

of the measured Grüneisen parameter.  While these analytic representations of the input 

data do improve the overall smoothness of the fitted parameters Evol(!)  and v! (") , they 

do at the same time restrict the high-pressure limit of the T = 0  treatment to about 420 

GPa in Ta6.8x, as compared to 1000 GPa in Ta4.  The second area of improvement in 

Ta6.8x has been a more robust analytic fit to the hard-core potential v2
hc (r,!)  in Eq. (41), 

allowing the full pair potential v2 (r,!)  to be reliably extended to smaller separations, 

which are of direct interest in the high-temperature liquid. 

 
Finally, these two general improvements combined have allowed the MGPT Ta6.8x 

potentials to be defined on a finer volume mesh, quantified by the reduced volume 

parameter x = (! /!0 )
1/3 .  Specifically, we have calculated the potentials on a uniform x 

mesh in increments of 0.01 over a range 0.80 ! x !1.08 , corresponding to 29 atomic 

volumes in all.  Representative behavior of the Ta6.8x potentials is shown in Fig. 1(b) for 

the pair potential v2 , in Fig. 2(a) for the three-ion potential v3 , and in Fig 2(b) for the 

four-ion potential v4 .  Note that v2  ranges from strongly attractive at large volume to 

completely repulsive at small volume, while v3  is generally repulsive, but small in  
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Fig. 2  Angular and volume dependence of the Ta6.8x multi-ion MGPT potentials v3  [left 

panel (a)] and v4  [right panel (b)] for specific near-neighbor configurations at selected 

volumes, in x increments of 0.04 with x = (! /!0 )
1/3 . 

 
magnitude, and v4  is significantly larger but necessarily oscillatory.  Overall, the 

numerical improvements in the Ta6.8x potentials lead to more accurate calculated 

thermodynamics from QHLD and from MGPT-MD simulations than is obtained with the 

Ta4 potentials. 

 

B. QHLD, MD, and VPT implementation of MGPT potentials 
 
In the present work, we have applied the Ta6.8x potentials in QHLD calculations and 

MGPT-MD simulations assuming a potential-energy function U(R) ! Etot (R,")  in the 

ion equations of motion and using the advanced matrix representation of the MGPT total-

energy functional [9], which provides maximum computational efficiency and accuracy.  

In this implementation, the angular functions L, P, and M in Eqs. (42) and (43) are 

evaluated on the fly during an MD simulation through d-state matrix multiplication, 

while the multi-ion forces that move the ions are determined analytically.  All of the 

present MGPT-MD simulations have been performed in standard fixed-shape cubic 
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computational cells at constant volume, using 250-ion ensembles for the bcc and liquid 

phases and 256-ion ensembles for the metastable fcc phase.  Constant simulation 

temperature has been maintained with a Gaussian thermostat [7, 29-30].  The constant-

volume MGPT-MD simulations have been performed along selected isochores at x 

increments of 0.04 between x = 0.80  and x = 1.08 , corresponding to a direct treatment of 

8 of the 29 volumes on the full x mesh.  MD-derived thermodynamic data at intermediate 

volumes have been obtained by interpolation.  The QHLD calculations of bcc 

quasiharmonic phonons and corresponding ion-thermal thermodynamic functions, on the 

other hand, have been performed directly on all 29 x-mesh volumes. 

 
The volume-dependent effective pair potential v2

eff  that is required in VPT to obtain z , 

the optimized reference potential vref (r, z ) , and the liquid reference free energy 

Aion
ref (!,Tref )  for Eq. (21), is calculated numerically by averaging over the MGPT multi-

ion potentials v3  and v4  in the liquid at temperature Tref : 

 

 v2
eff (Rij;!) = v2 (Rij ,!)+

1
3

'v3(ijk;!
k
" ) + 1

12
'v4 (ijkl;!

k ,l
" )  .                          (44) 

 
In the present Ta applications, we have taken Tref = 25,000  K.  The behavior of v2

eff  is 

compared with both that of v2  and that of the corresponding optimized r!12  reference 

potential vref  in Fig. 3 at the volume ! =!0 .  Note that vref  is a good match to v2
eff  in the 

short-range repulsive region important to the high-temperature liquid and that v2
eff  is 

everywhere more repulsive than v2 . 

 

C. Stable-solid bcc free energy 
 
In agreement with first-principles DFT calculations [32,33], Ta modeled with multi-ion 

MGPT potentials is both mechanically and thermodynamically stable in the bcc phase at 

T = 0  over the present pressure range, which extends up to 420 GPa at this temperature.  

Real quasiharmonic phonons frequencies are calculated throughout the Brillouin zone at 

all volumes within this pressure range.  The quality of the MGPT phonons obtained with  
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Fig. 3  Effective pair potential v2
eff  in high-temperature liquid Ta at 25,000 K for ! =!0 , 

as calculated from the present Ta 6.8x MGPT potentials v2 , v3  and v4  via Eq. (44) and as 

used to obtain an optimized r!12  reference potential vref  for the same conditions. 

 
the Ta6.8x potentials was previously illustrated in Fig. 5 of Ref. [11], where calculated 

frequencies at the [100] and [110] zone boundaries were compared with DFT results [32] 

for a range of volumes and with experiment [34] at ambient conditions.  As discussed in 

Ref. [11], there is good agreement among the MGPT, DFT, and experimental results, 

except for the anomalous transverse T2[110]  phonon frequency, which is underestimated 

with current MGPT Ta6.8x potentials. 

 
Regarding MGPT calculation of the quasiharmonic component of the ion-thermal free 

energy, the Brillouin-zone sums in Eq. (16) for Aion
qh  and Eq. (17) for Eph

0  have been 
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carried out over 506 q points in the irreducible (1/48th) wedge of the bcc BZ at each of 

the 29 volumes on our fine volume mesh.  The volume dependence of the Debye 

temperature !D(")  so calculated from Eqs. (17) and (19) with the present Ta6.8x 

potentials is shown in Fig. 4a and compared with the result obtained from the previous 

Ta4 potentials, where both results have been constrained by experiment at ambient 

conditions [34].  A corresponding comparison is made in Fig 4b for the quasiharmonic 

ion-Grüneisen parameter ! ion
qh , as calculated in the high-temperature limit,  T !!D , 

where one has ! ion
qh (") ="Pion

qh / Eion
qh .  While the improved Ta6.8x potentials and 

accompanying finer volume mesh have little direct effect on !D , they do clearly impact 

derivative quantities like ! ion
qh .  As also shown in Fig. 4b, the measured Grüneisen 

parameter at volume ! =!0  and room temperature [35] lies close to, but halfway 

between, the Ta4 and Ta6.8x quasiharmonic results. 

 
In stable solid phases, the generally larger computational challenge is to obtain accurate 

anharmonic free energies, and this is particularly so in the present Ta example, where 

Aion
ah  is small and only 1-5 mRy in magnitude near melt.  Here we use this challenge to 

demonstrate both the power of RSMD simulation so applied and the utility of isolating 

anharmonic effects through Eq. (18).  To obtain high convergence of Aion
ah  to 0.1 mRy, 

which is needed to calculate smooth thermodynamic derivatives at high temperature, has 

required integrating over the temperature range from xD!D  to xL
maxTL  very slowly, with

3!106  time steps at x = 1.08 , increasing to 8 !106  time steps for x ! 0.92 .  We have so 

calculated Aion
ah  along our eight simulation isochores ranging from x = 0.80  to x = 1.08 , 

as illustrated in Fig. 5a, with temperature-limit parameters xD = 0.8  and xL
max = 1! 2 .  As 

also demonstrated in Fig. 5a, each simulated isochore can be smoothly fit with a 

polynomial expansion of the form 

 
 Aion

ah (!,T ) = A2T
2 + A3T

3 + A4T
4 + A5T

5 + A6T
6  ,                                               (45) 

 
where the An  are volume-dependent coefficients.  The leading T 2  term in this expansion  
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Fig. 4  Volume dependence of the Debye temperature !D  [left panel (a)] and the 

quasiharmonic ion-Grüneisen parameter ! ion
qh  for  T !!D  [right panel (b)] in bcc Ta, as 

calculated from the present MGPT Ta6.8x potentials, and as compared with 

corresponding results obtained from the previous Ta4 potentials [8,27] and from 

experiment at ambient conditions [34,35]. 

 
ensures the proper behavior of Aion

ah  at low temperature and effectively corrects the small 

error incurred by starting the RSMD simulation at finite temperature.  Consistent with 

Eqs. (9) and (15), the corresponding anharmonic component of the total internal energy is 

then given by 

 
 Eion

ah (!,T ) = "A2T
2 " 2A3T

3 " 3A4T
4 " 4A5T

5 " 5A6T
6  .                                    (46) 

 
The smooth values of Aion

ah  and Eion
ah  so calculated on the eight isochores have then been 

extended to the full 29-volume mesh by numerical interpolation.  Selected isotherms of 

Aion
ah  on the full volume mesh are displayed in Fig. 5b, and reveal that Aion

ah  generally 

increases for Ta in both expansion and compression with a minimum occurring in the 80-

100 a.u. volume range.  Finally, values of the anharmonic pressure, Pion
ah = !"Aion

ah / "# , 

have been calculated by direct numerical differentiation on the full volume mesh. 
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Fig. 5  Anharmonic free energy in bcc Ta, as obtained from MGPT-RSMD simulations 

with the present Ta6.8x potentials.  (a) Five selected isochores of the eight total 

calculated, with x = (! /!0 )
1/3 .  Shown are both the raw simulation data (short dashed 

lines) and smooth fits (solid lines) to the data via Eq. (45).  (b) Four selected high-

temperature isotherms obtained via interpolation on the eight fitted isochores and 

displayed for T < TL (!) . 

 
An independent check on the numerical accuracy of Eion

ah  obtained from Eq. (46) can be 

made as follows.  If one performs a standard MD simulation at constant volume and 

temperature, Eion
ah  can be extracted from the total simulated ion-thermal energy Eion

sol  as 

Eion
ah = Eion

sol ! 3kBT .  From a well-equilibrated MGPT-MD simulation near melt conditions 

of ! =!0  and T = 4000  K, we thereby have obtained Eion
ah = !0.6 ± 0.2  mRy, where the 

statistics on Eion
sol  have been accumulated for 10 ps.  This result agrees with the 

corresponding value of Eion
ah = !0.6 ± 0.1 mRy calculated from Eq. (46) for the same 

volume and temperature. 

 
With a bcc cold energy E0 = E0

bcc , the total free energy of the stable solid, 
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Abcc (!,T ) = E0

bcc (!)+ Aion
bcc (!,T )+ Ael (!,T )

= E0
bcc (!)+ Aion

qh (!,T )+ Aion
ah (!,T )+ Ael (!,T )

 ,                                     (47) 

 
has then been calculated for bcc Ta on the full volume mesh from its component parts, 

together with corresponding results also obtained for the total internal energy Ebcc  and 

total pressure Pbcc , completing the full bcc equation of state.  A sensitive check on the 

physical accuracy of the thermal components of Abcc  and Ebcc  can be made in terms of 

measured thermodynamic derivatives, namely, the temperature dependence of the 

constant-pressure specific heat CP  and of the thermal expansion coefficient 

! ="#1($" / $T )P  at ambient pressure.  We compare our calculated results for these 

quantities in three limits against experimental data [36-40] in Fig. 6.  The limits so treated 

are first the full theory, with calculated quasiharmonic, anharmonic and electron-thermal 

contributions; second, the quasiharmonic plus anharmonic limit, with electron-thermal 

contributions omitted (Ael = 0) ; and third, the quasiharmonic limit, with both anharmonic 

and electron-thermal contributions omitted (Ael = Aion
ah = 0) . 

 
Regarding the specific heat CP  in Fig. 6a, the full theory is in close agreement with the 

experimental data of Hultgren et al. [36] up to about 2600 K.  The anharmonic 

contribution to this result is seen to be very small, while the much larger electron-thermal 

contribution is clearly essential to the agreement above room temperature.  The observed 

steep rise in CP  above 2600 K in the Hultgren et al. data is not captured by the present 

theory, but this feature is well known to be sensitive to impurities and other experimental 

factors, so this shortcoming is not necessarily significant.  In this regard, and as also 

shown in Fig. 6a, the full theory result for CP  at melt is in good agreement with the value 

derived from dynamic isobaric expansion measurements [37-39]. 

 
Regarding the thermal expansion coefficient !  in Fig. 6b, the full theory is in good 

accord with the measured data of Touloukian et al. [40] up to about 400 K and still in 

reasonable agreement to 1000 K.  Above 1000 K, however, the data has large error bars 

and begins to diverge from the theory, and only provisional values of thermal expansion  
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Fig. 6  Thermodynamic derivatives in bcc Ta at zero pressure, as calculated in the quasi-

harmonic (qh), quasiharmonic plus anharmonic ( qh + ah ), and quasiharmonic plus 

anharmonic plus electron-thermal (qh + ah + el ) limits of the present theory, and as 

compared to experiment.  (a) Constant-pressure specific heat CP , with the measured data 

from Ref. [36] (solid circles) and Refs. [37-39] (solid square); (b) Thermal expansion 

coefficient ! , with the measured data from Ref. [40] (solid circles). 

 
were measured above 2000 K.  In a similar manner, the Touloukian et al. data was also 

found to lie above the earlier EAM-MD calculations of !  in Ta by Strachan et al. [41]. 

 

D. Liquid free energy 
 
In the liquid, the biggest computational challenge is to calculate an accurate reference 

ion-thermal free energy Aion
liq (!,Tref )  along a high-temperature isotherm.  In the case of Ta 

we have successfully applied the combined VPT and TI methodology described above in 

Sec. IIC to that task at a reference temperature Tref = 25,000  K, with a choice of a bcc 

cold energy E0 (!) = E0
bcc (!) .  Using variational perturbation theory, upper and lower 

bounds to the free energy and an averaged variational parameter z (!)  were established 

at each of the eight volumes on our simulation mesh.  Using thermodynamic integration 
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from an r!12  reference system, optimized at each volume using z , to the true system, 

Aion
liq (!,Tref )  was then calculated on the simulation mesh from Eq. (21).  At each volume, 

only five points in the integral contained in Eq. (21) were necessary to obtain Aion
liq (!,Tref )  

to sub-mRy numerical accuracy.  Our final result for Aion
liq (!,Tref )  is plotted in Fig. 7a and 

compared with the approximate baseline VPT value of this quantity as calculated from 

Eq. (30), which overestimates Aion
liq (!,Tref )  by 2 mRy or less at small volumes, but 

underestimates this quantity by as much as 31 mRy at large volumes. 

 
With Aion

liq (!,Tref )  thereby established, MGPT-RSMD simulations of Aion
liq (!,T )  were then 

performed downward in temperature from Tref  to 0.5TL (!)  along the eight simulation 

isochores.  Raw simulation data for Aion
liq (!,T )  together with smooth analytic fits to the 

data are shown in Fig. 7b for four selected isochores.  The MGPT-RSMD simulation 

results were obtained with 2 !106  time steps at all volumes and were found to be well 

converged.  Similar good results were also obtained with as few as 5 !105  time steps, 

and increases first to 1!106  time steps and then to 2 !106  time steps produced little 

change in the results. 

 
The analytic fits of the ion-thermal free-energy data shown in Fig. 7b were obtained 

using the form 

 

 
Aion
liq (!,T ) = C0" #C1" ln" +C2" (" #1)+C3" ("

2 #1)+C4" ("
3 #1)

+C5" ("
4 #1)+C6" ("

5 #1)
                     (48) 

 
where ! = T /Tref  and where the Cn  are volume-dependent coefficients that include the 

constraint C0 (!) = Aion
liq (!,Tref ) .  Consistent with Eq. (9), the corresponding ion-thermal 

component of the total internal energy is given by 

 
 Eion

liq (!,T ) = C1" #C2"
2 # 2C3"

3 # 3C4"
4 # 4C5"

5 # 5C6"
6  ,                               (49) 

 
which is then analogous to Eq. (45) for Aion

ah  except for the necessary addition of a term  
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Fig. 7  Ion-thermal free energy Aion
liq  in liquid Ta, as obtained with the present Ta6.8x 

MGPT potentials.  (a) Reference isotherm Aion
liq (!,Tref )  for Tref = 25,000  K, calculated 

both approximately from variational perturbation theory (VPT), using Eq. (30), and more 

accurately from thermodynamic integration (TI), using Eq. (21).  (b) Four selected 

isochores of the eight total calculated via MGPT-RSMD simulation, in x increments of 

0.08 with x = (! /!0 )
1/3 .  Shown are both the raw simulation data (short dashed lines) 

and smooth fits (solid lines) to the data using Eq. (48). 

 
linear in the temperature.  While Eqs. (48) and (49) can be used directly in this form, with 

six independent fitting parameters at each volume, in practice it is more desirable to 

introduce an additional constraint on Eion
liq  at the reference temperature: 

 
 Eion

liq (!,Tref ) = C1 "C2 " 2C3 " 3C4 " 4C5 " 5C6  .                                                (50) 

 
Here we have calculated accurate values of Eion

liq (!,Tref )  for Ta at the eight volumes on 

our simulation mesh with independent MGPT-MD simulations.  Combining Eq. (50) with 

Eqs. (48) and (49) not only ensures that both Aion
liq  and Eion

liq  are accurately maintained 

along the T = Tref  isotherm, but it produces a very robust fit of Aion
liq  along all eight 
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MGPT-RSMD isochores in liquid Ta, as illustrated in Fig. 7b.  The values of Aion
liq  and 

Eion
liq  so calculated have been extended to the full 29-volume mesh by numerical 

interpolation.  Values of the ion-thermal pressure, Pion
liq = !"Aion

liq / "# , have then been 

calculated by direct numerical differentiation on the full volume mesh. 

 
The total free energy of the liquid, 

 
 Aliq (!,T ) = E0

bcc (!)+ Aion
liq (!,T )+ Ael (!,T )  ,                                                         (51) 

 
has been calculated for Ta on the full volume mesh from its three component parts, 

together with corresponding results obtained for the total internal energy Eliq  and total 

pressure Pliq .  As for the bcc solid, a sensitive physical check on the thermal components 

of Aliq  and Eliq  can be made in terms of the temperature dependence of the 

thermodynamic derivatives CP  and !  at ambient pressure.  We display our calculated 

values of CP  and !  for liquid Ta in Figs. 8a and 8b, respectively, as obtained both from 

the full theory, with ion- and electron-thermal components, and in the ion-thermal only 

limit (Ael = 0) .  As expected, the inclusion of the electron-thermal component has a big 

impact on the calculated derivatives, and our results in the liquid are very consistent with 

those obtained in the bcc solid (Fig. 6).  With electron-thermal effects included, we find 

that CP  at melt rises from 4.4kB  in the bcc solid to 5.6kB  in the liquid, which is in good 

agreement with the temperature-corrected isobaric data of Shaner et al. [37] as reported 

by Gathers [38].  On the other hand, Berthault et al. [39] find a much smaller rise of CP  

to only 4.6kB  in the liquid in their isobaric measurements.  Similarly, with the full theory 

we find that !  at melt rises from 2.7 !10"5K"1  in the bcc solid to 4.0 !10"5K"1  in the 

liquid.  In this case, the liquid result at melt is in close agreement with the Berthault el al. 

[39] data, but 20% less than inferred from Gathers [38]. 

 

E. Melt curve and equation of state 
 
Using the detailed computational methodology discussed above in Secs. IIIC and IIID,  
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Fig. 8  Thermodynamic derivatives in liquid Ta at zero pressure, as calculated both 

without electron-thermal contributions (ion only) and with electron-thermal contributions 

(ion + el) in the present theory, and as compared to experimental isobaric expansion data 

from Ref. [38] (iso83) and Ref. [39] (iso86).  (a) Constant-pressure specific heat CP , with 

the measured data at melt; (b) Thermal expansion coefficient ! . 

 
full-range equation of state (EOS) tables for the bcc and liquid phases of Ta have been 

assembled.  These tables include the total pressure P , the total internal energy E , and 

the total free energy A  evaluated as a function of volume and temperature on the full 29-

volume mesh and at temperature intervals of 100 K up to 25,000 K.  In this section, we 

use these results to examine the equilibrium melt curve connecting the bcc-solid and 

liquid EOS surfaces, as well as basic pressure-volume compression curves, namely, the 

300-K isotherm and the principal shock Hugoniot, which can be directly compared to 

experiment. 

 
The melt curve has been calculated here using the standard Helmholtz free-energy 

construction, obtaining melt temperatures Tm  as a function of pressure in 100 K intervals 

up to melt pressures Pm  approaching 500 GPa.  To examine melt sensitivities in Ta, we 

have calculated the melt curve not only with the full theory that we have developed, but 
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also in the limit of no electron-thermal contributions ( Ael = 0 ) and in the limit of both no 

electron-thermal and no anharmonic contributions ( Ael = Aah = 0 ).  The three Ta melt 

curves so obtained are compared in Fig. 9a.  As expected, the effect of electron-thermal 

contributions is found to be small, lowering the melt curve by only 75-200 K, or less than 

3%, across the entire pressure range considered.  At the same time, and as previously 

discussed in Ref. [11], the bcc free-energy melt curve calculated in the Ael = 0  limit is in 

very good agreement with the corresponding result obtained in two-phase MGPT-MD 

melt simulations, thus validating the computational accuracy of our melt calculation in 

this limit.  As also demonstrated in Fig. 9a, the effect of anharmonic contributions on the 

Ta melt curve is considerably larger, especially at low pressures below 100 GPa, where 

Tm  is lowered by up to 725 K or over 20%, and at very high pressures above 250 GPa, 

where Tm  is lowered by up to 550 K.  This finding is consistent with the fact that the 

anharmonic free energy in the bcc solid is generally calculated to be minimum at 

intermediate volumes and pressures, as was shown above in Fig. 5. 

 
Our full-theory melt curve for Ta is compared against static and dynamic experimental 

data in Fig. 9b.  The calculated zero-pressure melt temperature of Tm = 3349  K and melt-

curve slope of dTm / dPm = 52.2  K/GPa compare well with the values of 3270 K and 58.8 

K/GPa, respectively, obtained from isobaric data [37,38].  At intermediate pressures, the 

recent static diamond-anvil-cell (DAC) data of Dewaele et al. in Ta [42], obtained in the 

pressure range 52-113 GPa, lie below our calculated melt curve, but these data also have 

large temperature errors bars of 500-1000 K.  At high pressure, the intersection of the 

present calculated principal Hugoniot in the bcc solid with the melt curve is in excellent 

agreement with the measured onset of shock melting [43,44] at 295 GPa and 9700 K. 

 
Our corresponding full-theory pressure-volume relations for the room-temperature (300-

K) isotherm and principal Hugoniot are plotted in Fig. 10 and again compared against 

static and dynamic experimental data.  Figure 10a displays the results for these quantities 

in the bcc solid below about 300 GPa.  Our calculated 300-K isotherm is in good 

agreement with the DAC data of Cynn and Yoo [45], measured to 174 GPa, and with the 

DAC data of Dewaele et al. [46], measured to 94 GPa.  Similarly, our calculated bcc  
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Fig. 9  High-pressure melting in Ta, as calculated from the present bcc-solid and liquid 

free energies.  (a) Sensitivity of the melt curve to electron-thermal (Ael )  and anharmonic 

(Aah )  free-energy contributions; (b) Full-theory melt curve and principal Hugoniot, with 

comparison to experimental isobaric [37,38], DAC [42] and shock [43,44] melt data. 

 
Hugoniot, whose temperature ranges from 300 K to about 10,000 K, is in good agreement 

with the shock data on Mitchell and Nellis [47].  Figure 10b displays our calculated 

Hugoniot in both the bcc solid and the liquid, extending to 600 GPa.  Reasonably good 

agreement with shock data [47,48] is maintained in the liquid as well, although above 400 

GPa the calculated Hugoniot pressure is slightly underestimated.  Also note that, as 

expected and in contrast to the calculated temperature-pressure Hugoniot (Fig. 9b), 

melting produces no visible discontinuity in the pressure-volume Hugoniot. 

 

F. Metastable fcc free energy 
 
We finally turn to the case of calculating the free energy for a metastable phase, using the 

fcc phase of Ta as a prototype example.  Fcc is one of a number of structures in Ta that is 

predicted to be mechanically unstable at T = 0 , with calculated imaginary quasiharmonic 

phonon frequencies, but that is stabilized at high temperature and pressure by large 

anharmonic effects [11,33].  In particular, previous MGPT-MD simulations with Ta6.8x 
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Fig. 10  High-pressure EOS properties in Ta, as obtained from the present bcc and liquid 

equations of state and compared to experiment.  (a) Room-temperature (300-K) isotherm 

and principal Hugoniot calculated in the bcc phase (solid lines), and compared, 

respectively, to static DAC data (solid circles from Ref. [45] and open diamonds from 

Ref. [46]) and dynamic shock data (solid squares from Ref. [47]); (b) Principal Hugoniot 

calculated in both the bcc solid and the liquid, and compared to shock data (solid squares 

from Ref. [47] and solid diamonds from Ref. [48]). 

 
potentials [11] have shown that fcc Ta displays good mechanical stability near melt, yet 

remains thermodynamically less stable than bcc Ta, with a melt temperature that lies 

everywhere below that of bcc.  Large-cell two-phase MGPT-MD simulations with 74,088 

atoms were used in Ref. [11] to calculate a smooth fcc melt curve to 440 GPa in the 

Ael = 0  limit.  In the process, accurate data were obtained on the melt temperature Tm
fcc , 

melt pressure Pm
fcc , and solidus volume !sol

fcc , data that we have used here to establish a 

reference free energy for the fcc phase.  Toward this end, we have carefully fit the fcc 

melt data so obtained in the analytic forms 

 
 Tm

fcc (x) = (3.6661! 9.8710x + 9.0306x2 ! 2.7966x3)"105K                                 (52) 
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and 

 
 Pm

fcc (x) = (2.8619 ! 8.1213x + 7.7248x2 ! 2.4643x3)"104GPa  ,                           (53) 

 
where x = (!sol

fcc /!0 )
1/3  within the restricted range 1.04 ! x ! 0.80 .  Combining the use of 

Eqs. (52) and (53) with interpolation on the Ael = 0  liquid equation of state for Ta, we 

have calculated the fcc ion-thermal free energy Aion
fcc (!,Tm

fcc )  along the melt curve using 

Eqs. (34) and (35), with a cold energy E0
fcc(!)  for the fcc structure.  Because the fcc melt 

curve lies significantly lower in temperature than the bcc melt curve, the accuracy of this 

procedure was improved by constructing a special liquid free energy and EOS in which 

the MGPT-RSMD simulations for the liquid were taken to lower temperature.  

Specifically, the liquid simulations for this purpose were performed downward in 

temperature from 25,000 K to 1000 K, instead of down to 0.5TL  as in Sec. IIID above.  

These calculations were carried out along the eight simulation isochores, using 1!106  

time steps in each case, with extension to the full 29-volume mesh by interpolation. 

 
To obtain fcc ion-thermal free energies above and below the reference temperature 

Tref = Tm
fcc , we have used the reference free energy Aion

fcc (!,Tm
fcc )  in Eq. (14) and performed 

MGPT-RSMD simulations to higher and lower temperature along the seven simulation 

isochores contained within the restricted volume range of Eq. (52) and (53), using a total 

of 1!106  time steps in each case.  The simulations to higher temperature were carried 

out from Tm
fcc  to Tmax

fcc = 17,500  K, while those to lower temperature were performed from 

Tm
fcc  to 0.5Tm

fcc  K, which we estimate to be an approximate lower bound in temperature 

for the mechanical stability of the fcc structure.  The fcc ion-thermal free-energy data so 

obtained were then fit with an analytic form analogous to Eq. (48) for the liquid: 

 

 
Aion
fcc (!,T ) = B0" # B1" ln" + B2" (" #1)+ B3" ("

2 #1)+ B4" ("
3 #1)

+B5" ("
4 #1)+ B6" ("

5 #1)
                     (54) 

 
where ! = T /Tmax

fcc , the Bn  are volume-dependent coefficients, and B0 (!) = Aion
fcc (!,Tmax

fcc ) .  
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From thermodynamic consistency, the corresponding ion-thermal component of the total 

fcc internal energy is given by 

 
 Eion

fcc (!,T ) = B1" # B2"
2 # 2B3"

3 # 3B4"
4 # 4B5"

5 # 5B6"
6  .                               (55) 

 
The values of Aion

fcc  and Eion
fcc  so calculated have then been extended to a fine 25-volume 

mesh by numerical interpolation.  The fcc ion-thermal pressure, Pion
fcc = !"Aion

fcc / "# , has 

been calculated by direct numerical differentiation on the fine volume mesh. 

 
To test the numerical accuracy and self-consistency of our calculation of Aion

fcc (!,T ) , the 

total fcc free energy in the Ael = 0  limit was obtained by adding the cold energy E0
fcc (!)  

and assembling an fcc EOS table in the 2000 !17,500  K temperature range.  This result 

was then used together with the corresponding liquid free energy and EOS discussed 

above to perform a Helmholtz free-energy calculation of the fcc melt curve.  The free-

energy melt curve so calculated is compared with the input two-phase melt data in Fig. 

11.  The agreement is seen to be excellent.  We have also performed additional MGPT-

MD simulations to determine actual approximate upper and lower temperature bounds on 

fcc mechanical stability, and these are plotted as a function of pressure in Fig. 11.  To 

estimate the upper bound, we have calculated the critical temperature Tc  to 

homogeneously melt the fcc solid at constant volume.  To estimate the lower bound, we 

have observed from above the temperature Tms  at which the fcc lattice loses structural 

stability and begins to transform to another structure at constant volume.  We find that 

 Tms ! 0.5Tm
fcc  consistent with our choice of 0.5Tm

fcc  as the lower temperature limit in the 

MGPT-RSMD simulations to determine fcc ion-thermal free energy. 

 
As a final step, we have added the electron-thermal contribution Ael  to form the total fcc 

free energy Afcc  at the same level of approximation as obtained above for the bcc 

structure in Sec. IIIC and for the liquid in Sec. IIID: 

 
 Afcc (!,T ) = E0

fcc (!)+ Aion
fcc (!,T )+ Ael (!,T )  .                                                         (56) 
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Fig. 11  High-pressure melt curve for the metastable fcc structure in Ta, as calculated 

without electron-thermal free energy contributions ( Ael = 0 ).  Solid square points denote 

input melt data from two-phase MGPT-MD simulations [11], while the solid line is the 

calculated melt curve from the output fcc free energy and the liquid free energy.  The 

dashed lines represent approximate upper (Tc ) and lower (Tms ) bounds on fcc mechanical 

stability. 

 
A corresponding total fcc EOS table was then assembled and the fcc free-energy melt 

calculation repeated.  As expected, the impact of Ael  on the fcc melt curve was found to 

be small, lowering the calculated melt temperature by 3% or less at all pressures, exactly 

as was the case for the bcc melt curve (Fig. 9a). 
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IV. CONCLUSIONS 

 
In the present paper we have elaborated and implemented an efficient computational 

method based on reversible scaling molecular dynamics [3] to calculate accurate 

Helmholtz free energies of weak-coupling materials characterized by temperature-

independent ion forces and additive cold, ion-thermal and electron-thermal free-energy 

components.  With our method such materials can be treated in stable solid phases, in the 

liquid, and in metastable phases alike over wide ranges of volume and temperature, with 

both significant cost savings and controllable numerical accuracy achieved in the central 

ion-thermal RSMD simulations.  In stable solid phases, our approach smoothly combines 

a standard quasiharmonic-phonon calculation of the ion-thermal free energy at low 

temperatures with an RSMD simulation of the anharmonic vibrational free-energy 

component at high temperatures to produce a seamless ion-thermal free energy from 

T = 0  to above melt at each volume of interest.  In the liquid, we first use variational 

perturbation theory [4,7,23,24] to optimize an appropriate r!12  reference pair potential 

and then perform a smooth thermodynamic integration to the true system to establish a 

reference free energy along a high-temperature isotherm at the top of temperature range 

of interest.  At each volume, a single RSMD simulation is then used to obtain an ion-

thermal free energy for the liquid from the reference temperature down to below melt.  In 

metastable solid phases, a reference free energy is established along the solidus melt line 

by using melt input from independent two-phase MD simulations combined with the 

calculated liquid free energy.  For each volume, an RSMD simulation to higher 

temperature and an RSMD simulation to lower temperature is used to calculate the ion-

thermal free energy within the limits of mechanical stability of the metastable phase. 

 
We have specifically adapted our free-energy method to metals where the ion forces are 

well described by multi-ion MGPT interatomic potentials [6-11], together with the 

inclusion of small additional electron-thermal contributions to the free energy.  Using 

refined Ta6.8x MGPT potentials in the QHLD, VPT and RSMD calculations, we have 

successfully applied this method to the stable-bcc, liquid, and metastable-fcc phases of 

tantalum.  For each phase, we have calculated a total Helmholtz free energy and its 

components to sub-mRy numerical accuracy over an extended volume range from up to 
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26% expansion to nearly two-fold compression and temperatures up to 25,000 K.  The 

small anharmonic vibrational free-energy component in the bcc solid, which is only 1-5 

mRy in magnitude near melt in Ta, has been everywhere converged to 0.1 mRy.  The 

physical accuracy of the total free energy obtained for each phase has been tested through 

the calculation of sensitive thermodynamic properties of Ta, including the specific heat 

and thermal expansion coefficient in the bcc solid and the liquid at ambient pressure, the 

bcc and metastable-fcc melting curves to high pressure above 400 GPa, and the equation 

of state and shock Hugoniot in the bcc and liquid phases, extending to pressures of 600 

GPa. 

 
We conclude that the present RSMD-based free-energy method is an attractive approach 

for calculating accurate multiphase equations of state and equilibrium phase lines, as well 

as for investigating metastable phases and possible polymorphism [11], in weak-coupling 

materials, provided reliable temperature-independent ion forces are available.  In addition 

to multi-ion MGPT potentials, the present free-energy method can be adapted to other 

temperature-independent potentials, including GPT [12-16], BOP [17-19], EAM [21], 

and FS [22] potentials among others, for suitable applications in relevant materials.  It 

may also be possible to extend this method to DFT quantum simulations like QMD in 

weak-coupling materials, provided the electrons are held at zero temperature and not 

allowed to equilibrate with the ions, as is normally the case in current QMD simulations 

on metals [5,20].  A major challenge there, however, would be the severe limitations on 

time step and simulation duration imposed by QMD. 
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